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Abstract-This paper provides an efficient implementation of FIR filter without using multipliers. Area 

complexity in an algorithm of finite impulse response (FIR) filter is mainly caused by multipliers. Among 

the multiplierless implementation of FIR filter, Distributed Arithmetic (DA) is most efficient technique. In 

Distributed Arithmetic inner products are precomputed and stored in Look Up Table (LUT), than this 

precomputed values are added and shifted with number of times equal to the precision of input samples. If 

filter order increases than Look Up Table size also increases in its basic structure, makes it inefficient for 

many applications. In order to eliminate exponential growth of LUT with the order of filter we use memory 

partitioning (slicing) technique. We presented 16-tap FIR filter, with different size of memory partitioning 

of LUT and combine with OBC Coding. Implementation and synthesis result shows drastic improvement 

in performance in terms of speed as well as saving in area, with more number of slices. 

Keywords-Finite Impulse Response, multiplierless, distributed arithmetic, Field Programmable Gate Array, OBC 

Coding 

I. INTRODUCTION 

 Finite Impulse Response (FIR) filters have played a central role in digital signal processing because of its 
advantages. FIR filter can implement linear-phase filtering. This means that the filter has no phase shift across the 
frequency band. Alternately, the phase can be corrected independently of the amplitude and it can be used to 
correct frequency –response errors in a loudspeaker to a finer degree of precision than using Infinite Impulse 
Response filters. FIR has desirable numeric properties. In practice, all DSP filters must be implemented using 
finite-precision arithmetic, that is, a limited number of bits. The use of finite-precision arithmetic in IIR filters can 
cause significant problems due to the use of feedback, but FIR filters without feedback can usually be implemented 
using fewer bits, and the designer has fewer practical problems to solve related to non-ideal arithmetic, they can 
be implemented using fractional arithmetic. Unlike IIR filters, it is always possible to implement a FIR filter using 
coefficients with magnitude of less than 1.0. (The overall gain of the FIR filter can be adjusted at its output, if 
desired.) . 

This is an important consideration when using fixed-point DSP's, because it makes the implementation much 
simpler. In general FIR filter is characterized by  

𝑦 = ∑ AnXn
𝑘
𝑛=1            (1) 

 Equation (1) shows that, large number of multiplication involved in implementing FIR filter. Multiplier 

caused large delay and area in VLSI implementation. So most of the researcher doing research in multiplierless 

implementation. In multipliered FIR filters area is reduced by means of sharing of  multipliers or by manipulating 

the coefficients so we can reduce the number of multiplication. Distributed Arithmetic Technique and Constant 

Coefficient Multiplier comes under multiplierless implementation. Computation Sharing Differential Coefficient 

(CSDC) method, which can be used to obtain low-complexity multiplierless implementation of finite-impulse 

response (FIR) filters[1], this method  is applicable to signal processing tasks involving multiplications with a set 

of constants. Look Up Table optimization for memory-based computation which gives idea about reduction of 

memory requirement based on antisymmetric product coding (APC) and Odd Multiple Storage (OMS) techniques 

[2]. Partial LUT Size Analysis in Distributed Arithmetic FIR Filters on FPGAs which can be used to reduce 

memory requirement by means of partial LUT  slicing concept[3] Moreover, the OMS scheme in [2] does not 

provide an efficient implementation when combined with   the APC technique. In this brief, we therefore present 

a slicing concept combined with an OBC coding for efficient memory based multiplication. This paper is 

organized as follows.  
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 The review of basic Distributed Arithmetic Technique is given in Section II and in Section III architecture of 

Distributed Arithmetic Technique is presented, and also implementation steps based on memory partitioning is 

given. Section VI gives implementation of distributed arithmetic architecture using offset binary coding. Section 

V gives DA architecture implementation combine with LUT slicing and offset binary coding and Section VI gives 

area utilization and performance of the proposed DA architecture. Its comparison with previous work is also 

presented. At the last conclusions are given in section VII.  

II. DISTRIBUTED ARITHMETIC 

Distributed arithmetic is an efficient procedure for computing inner products between a fixed and a variable 
data vector. The basic principle is owed to Croisier et al. (Patent), and Peled and Liu have independently presented 
a similar method.  Distributed Arithmetic is bit-serial in nature. It can therefore appear to be slow.  When the 
number of elements in a vector is nearly the same as the word size, than DA is quite fast. Area savings from using 
DA can be up to 80% in DSP hardware designs. 

Consider general FIR filter equation from (1), Where the coefficients An, n= 1, 2, 3 . . . m are fixed. A two’s-
complement representation is used for the data components which are scaled so that  |xn |≤ 1. Let xn be an N-bit 
scaled two’s complement number. In other words, 

 

 𝑋𝑛 = −𝑋𝑛0 + ∑ 𝑋𝑛𝑚2−𝑚𝑁−1
𝑚=1                                     (2) 

 

The inner product can be rewritten 

 

𝑦 = ∑ 𝐴𝑛
𝑘
𝑛=1 [−𝑋𝑛0 + ∑ 𝑋𝑛𝑚 2

−𝑚𝑁−1
𝑚=1 ]        (3) 

 

Where 𝑋𝑛𝑚is the mth bit in Xn, By interchanging order of two summations we get 

 

𝑦 = − ∑ 𝐴𝑛
𝑘
𝑛=1 𝑋𝑛0 + ∑ [∑ 𝐴𝑛𝑋𝑛𝑚

𝑘
𝑛=1 ]𝑁−1

𝑚=1 2−𝑚                                  
    (4) 

 

Which can be written as   

 

𝑦 = −𝐹0(𝑋10, 𝑋20, … . , 𝑋𝐾0)    + ∑ 𝐹𝑚
𝑁−1
𝑚=1 (𝑋1𝑚, 𝑋2𝑚, … . , 𝑋𝑘𝑚)2−𝑚  (5) 

From (5) we can observe that the inner product take one of the possible 2k values given that X€{0,1}, and this 
2k values are correspond to all possible sum combinations of filter coefficient. These values are precomputed 
computed and stored in memories, addressed by Xnm  thus; the multiplier required  for MAC algorithm  of FIR 
filter is eliminated by means of LUT access and summations. Analysis shows that; the direct implementation of 
filter from (1); the number of MAC units increases with increase in the filter order so this will cause more delay 
and area consumption, whereas in DA architecture based hardware in critical path is decoupled from the order of 
filter. Hence this architecture is most preferred one for implementing algorithm in Field Programmable Gate 
Array.  

III. DISTRIBUTED ARTHIMETIC ARCHITECTURE 

 

 

                                              

 

 

 

 

 

 

 

 

 

 
     Figure 1. Basic architecture of distributed arithmetic                                                  Figure 2.  DA Architecture with Partition 4 
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In basic architecture of Distributed Arithmetic (Figure 1), the size of Look up Table increases rapidly with the 
order of filter. 

To avoid this drawback the main idea followed by this research is slicing of Look Up Table into desired 
number. By this technique we reduce the size of memory, with small increase in area requirement due to adders. 
For example if filter order is 16 then 65536 memory locations are needed for implementing filter without slicing 
concept. With LUT slicing by a factor four reduces the memory locations to 64. This sliced Look Up Table 
architecture on FPGA have Registers, sliced Look Up Table units and the accumulator unit. 

In Look up Table slicing concept large Look Up Table is divided into small size Look Up Table, then partial 
product is calculated by means of adding the result of small size   

I.  Register 

Input samples Xn of data width N stored in input register (Figure 3). Input samples are given in parallel form 
so we need to convert these parallel samples into serial form in order to get address for LUT. these parallel formed 
input samples are converted into serial form advanced to right for every clock, so as we create an address of Look 
Up Table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Register 

 

II. LUT Slicing 

Distributed Arithmetic is efficient only when filter order is low. If filter order is high then LUT size will 
increases rapidly, for example for 16-tab filter 65536 locations are needed for implementation. This reduces the 
performance of the system. So, we need to reduce the memory requirement to acceptable level in order to increase 
the system performance. Structure of LUT without slicing is shown in Figure 4. To reduce the size of LUT we 
subdivided the large LUT into a number of small size LUTs, called LUT partitioning. Each partitioned LUT 
operates on a different set of filter coefficient. LUT with partitioning is shown in Figure 5. 
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In this work analysis of 16-tab FIR filter is carried out on various size of partitioning. Details of LUT with 
partitioning by a factor 4 are shown in Figure 5. Partial product term can be calculated by adding the output of all 
slices by adder tree. Further, by taking the number of accumulation and shift operation, final output is calculated. 

 

a3 a2 a1 a0 Data 

0 0 0 0 0 

0 0 0 1 A0 

0 0 1 0 A1 

0 0 1 1 A0+A1 

0 1 0 0 A2 

0 1 0 1 A2+A0 

0 1 1 0 A2+A1 

0 1 1 1 A2+A1+A0 

1 0 0 0 A3 

1 0 0 1 A3+A0 

1 0 1 0 A3+A1 

1 0 1 1 A3+A1+A0 

1 1 0 0 A3+A2 

1 1 0 1 A3+A2+A0 

1 1 1 0 A3+A2+A1 

1 1 1 1 A3+A2+A1+A0 

Figure 6. 24 Word LUT of Data 

III. Accumulator and Shifter Unit  

This phase consists of an accumulator and shifter. The partial product is generated by adding outputs of LUTs. 
Partial product generated by LUTs is added and shifted in every iteration. Number of iteration is equal to the input 
precision.   

IV. Control Unit 

Control unit used to control circuit components behaviour and the whole circuit behaviour. In Distributed 
Arithmetic control unit is counter whose upper limit depends basically on the input precision and defines the 
circuit throughput. Compare with other methods, an advantage of distributed Arithmetic is that the throughput in 
DA-based architectures is independent of the order of the filter. 

IV. DISTRIBUTED ARITHMETIC USING OFFSET BINARY CODING 

The memory size may be reduced from LUT slicing concept. Again memory size may be halved to 1/2(2n )  
with the help of LUT slicing combine with offset binary coding. in order to understand how memory size will 
reduced by offset binary coding, we interpret the input data as being cast not in a (0.1) straight binary code, but 
instead as being cast in (-1, 1)  offset binary code. if we represent input as  

Xn=1/2 [ Xn- (-Xn) ]                             (6) 

 

-Xn can be represent as 

−Xn = −bn(N−1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2(N−1) + ∑ −bnm

̅̅ ̅̅ ̅̅ ̅2n N−2
n=1 + 1                       (7) 

 

Where the overscore symbol indicates the negation of bit. From (6) and (7) 

 

  Xn = 1/2[−(bn(N−1) − bn(N−1)
̅̅ ̅̅ ̅̅ ̅̅ ̅)2(N−1) +  ∑ (bnm − bnm

̅̅ ̅̅ ̅)2nN−1
m=1 − 1]    (8) 

 

For simplification  

 

c nm = bnm − bnm
̅̅ ̅̅ ̅            n ≠ N − 1                                                                 (9) 
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𝑐 𝑛(𝑁−1) = 𝑏𝑛(𝑁−1) − 𝑏𝑛(𝑁−1)
̅̅ ̅̅ ̅̅ ̅̅                                                                                    (10) 

 

From (1) and (8) 

 y = 1
2⁄ ∑ An

k
n=1 [−(bn(N−1) − bn(N−1)

̅̅ ̅̅ ̅̅ ̅̅ ̅)2(N−1) + ∑ (bnm − bnm
̅̅ ̅̅ ̅)2nN−1

m=1 − 1]            (11) 

 

 y    = ∑ Q(bn)k
n=1 + Q(0)           (12) 

 

𝑄(𝑏𝑛) = ∑
𝐴𝑛

2
𝑐𝑛𝑚    2𝑛 𝑛 ≠ 𝑁 − 1    𝑎𝑛𝑑   𝑄(0) = − ∑

𝐴𝑛

2

𝑘
𝑛=1

𝑘
𝑛=1                           (13) 

 

𝑄(𝑏𝑁−1) = − ∑
𝐴𝑛

2
𝑐𝑛(𝑁−1)   2(𝑁−1)                𝑛 = 𝑁 − 1    𝑘

𝑛=1                            (14) 

 

Note that memory size will be reduced from 2n to 2n-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. DA Architecture with offset binary coding 

 

V. DISTRIBUTED ARCHITECTURE COMBINE WITH LUT SLICING AND OFFSET BINARY CODING 
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8-Word 

Memory Contents,Q 

 
0         0          0         0 

0         0          0         1 

0         0          1         0 
0         0          1         1 

0         1          0         0 

0         1          0         1 
0         1          1         0 

0         1          1         1 

 
-1/2(A1+A2+A3+A4) 

-1/2(A1+A2+A3- A4) 

-1/2(A1+A2-A3+ A4) 
-1/2(A1+A2-A3-  A4) 

-1/2(A1-A2+A3+ A4) 
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-1/2(A1- A2-A3+ A4) 

-1/2(A1-A2- A3 - A4) 

 

1         0          0         0 

1         0          0         1 
1         0          1         0 

1         0          1         1 

1         1          0         0 
1         1          0         1 
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1         1          1         1 
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If LUT is sliced into two then output is given by  

  y = ∑ 𝐴𝑛𝑋𝑛 + ∑ 𝐴𝑛𝑋𝑛 𝑘

𝑛=
𝑘

2
+1

𝑘
2⁄

𝑛=1                                         (15) 

 

From (14) and (15) 

y = ∑ Qbn2−nk/2
n=1 + 2−(N−1)Q(0)   +  ∑ Qbn2−nk

n=
k

2
+1

+ 2−(N−1)Q(0)      (16) 

 

From above equations (5), (15) and (16) we can conclude that for k-tab filter memory requirements are 
2k,2(2k/2) , 2(2(k/2)-1) respectively. For example if filter order is 8 than memory requirements are 256(without 
slicing), 32(sliced by 2), 16(slicing by 2 combine with OBC) locations respectively. Architecture combine with 
LUT slicing and offset binary coding is efficient in terms of memory as well as delay so proposed architecture is 
efficient compare to existing methods.   

VI. IMPLEMENTATION RESULT AND PERFORMANCE ANALYSIS 

Xilinx Integrated Environment (ISE) is used for synthesis and implementation of a design. FIR filter is 
designed and implemented with fixed filter coefficient. In order to evaluate performance of the proposed scheme 
first filter is designed using MATLAB tool from this collect the filter coefficient and then coefficients are 
truncated and scaled with 8 bits of precision. The Magnitude and phase response of the design filter in MATLAB 
is shown in Figure 9.  

 

 

Figure 9. Magnitude and Phase Response of FIR Filter using   MATLAB 

 

 

Figure 10.  Coefficients calculation using MATLAB 
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Figure 11. Normalised value of coefficients and its 2’s complement equivalent 

 

 

Figure 12. Simulation Result for Partial Product evaluation with address size of 4 

 

 

Figure 13. Simulation Result for Partial Product evaluation with address size of 2 

 

 

Figure 14. 16-tap FIR filter output 

 

 

 

Figure 15. 8-tap FIR filter output 
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Table I: PERFORMANCE COMPARISONS OF FIR FILTER 

 
Filter 
order 

Parameter Conventional  
FIR 

FIR Without 
Partitioning 

FIR With 
Partitioning Size 

of 4 

FIR With 
Partitioning Size 

of 2 

FIR Combine With 
Partitioning  and 

OBC Coding 

 
 

      16 

Slices 700 558 321 296 280 

Delay(ns) 46.02 28.85 24.45 22.67 20.73 

Power (mw) 85.48 46.08 37.45 32.45 28.62 

Memory(Kb) - 245048 209622 198632 193654 

 

 
      8 

Slices 365 282 171 162 158 

Delay 28.32 22.47 19.83 18.26 16.86 

Power (mw) 52.34 31.03 27.24 25.53 23.40 

Memory(Kb) - 213462 195752 185473 180214 

VII. CONCLUSION 

Distributed Arithmetic Architecture combine with LUT slicing and OBC coding has proved to be an efficient 
technique for FIR filter implementation. Because of its highly flexible nature of this structure, allow it to use in 
complete serial to full parallel form and also Distributed arithmetic architecture combine with Look Up Table 
slicing and OBC coding decreases the memory requirements for FIR implementation compared with distributed 
arithmetic architecture without LUT slicing. Compared with conventional FIR implementation ( multiplier based 
DA architecture combine with LUT slicing  and OBC coding reduces the delay present in a system . 
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